Pointwise Convergence of Ergodic Averages in Orlicz Spaces

نویسنده

  • ANDREW PARRISH
چکیده

converge a.e. for all f in L log log(L) but fail to have a finite limit for an f ∈ L. In fact, we show that for each Orlicz space properly contained in L, 1 ≤ q < ∞, there is a sequence along which the ergodic averages converge for functions in the Orlicz space, but diverge for all f ∈ L . This extends the work of K. Reinhold, who, building on the work of A. Bellow, constructed a sequence for which the averages AN f(x) converge a.e. for every f ∈ L , p > 1, but diverge for some f ∈ L. Our method, introduced by Bellow and extended by Reinhold and M. Wierdl, is perturbation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spaces of Infinite Measure and Pointwise Convergence of the Bilinear Hilbert and Ergodic Averages Defined by L-Isometries

We generalize the respective “double recurrence” results of Bourgain and of the second author, which established for pairs of L∞ functions on a finite measure space the a.e. convergence of the discrete bilinear ergodic averages and of the discrete bilinear Hilbert averages defined by invertible measure-preserving point transformations. Our generalizations are set in the context of arbitrary sig...

متن کامل

Ergodic Theorems on Amenable Groups

In 1931, Birkhoff gave a general and rigorous description of the ergodic hypothesis from statistical meachanics. This concept can be generalized by group actions of a large class of amenable groups on σ-finite measure spaces. The expansion of this theory culminated in Lindenstrauss’ celebrated proof of the general pointwise ergodic theorem in 2001. The talk is devoted to the introduction of abs...

متن کامل

$(A)_ {Delta}$ - double Sequence Spaces of fuzzy numbers via Orlicz Function

The aim of this paper is to introduce and study a new concept ofstrong double $(A)_ {Delta}$-convergent sequence offuzzy numbers with respect to an Orlicz function and also someproperties of the resulting sequence spaces of fuzzy   numbers areexamined. In addition, we define the double$(A,Delta)$-statistical convergence of fuzzy  numbers andestablish some connections between the spaces of stron...

متن کامل

Strongly $[V_{2}, lambda_{2}, M, p]-$ summable double sequence spaces defined by orlicz function

In this paper we introduce strongly $left[  V_{2},lambda_{2},M,pright]-$summable double vsequence spaces via Orlicz function and examine someproperties of the resulting these spaces. Also we give natural relationshipbetween these spaces and $S_{lambda_{2}}-$statistical convergence.

متن کامل

POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS

We study the space of all continuous fuzzy-valued functions  from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$  endowed with the pointwise convergence topology.   Our results generalize the classical ones for  continuous real-valued functions.   The field of applications of this approach seems to be large, since the classical case  allows many known devices to be fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009